

ТАТАРСТАНСКИЙ МЕЖДУНАРОДНЫЙ ФОРУМ по энергетике и энергоресурсоэффективности

Круглый стол «Энергоэффективность и энергосбережение в строительной отрасли: от цифровой модели к реальному объекту»

Моделирование тепловых потоков через ограждения в грунте

Крайнов Дмитрий Владимирович к.т.н., доцент КГАСУ /Казань/

Гагарин Владимир Геннадьевич д.т.н., профессор НИИСФ /Москва/

Проблема

Можно ли применять методику расчета удельных потерь теплоты через неоднородности конструкций, заглубленных в грунт?

Существующий инженерный метод расчета теплопотерь подземной части здания не учитывает тепловой режим грунта, его точность можно повысить.

- 1. Малявина Е.Г., Гнездилова Е.А., Левина Ю.Н., Расчет теплопотерь через полы по грунту в зданиях с современной теплозащитой // БСТ: Бюллетень строительной техники. 2019. (18). С. 60-62.
- 2. Kenichi S., Terrington R. L., Influence of geology and hydrogeology on heat rejection from residential basements in urban areas // Tunnelling and Underground Space Technology. 2019

Методика СП 50.13330.2012

$$R_o^{np} = \frac{1}{\sum a_i U_i + \sum l_j \Psi_j + \sum n_k \chi_k}$$

$$\Psi_j = \frac{Q_j^L - Q_j}{t_{\rm B} - t_{\rm H}}$$

Цель и задачи работы

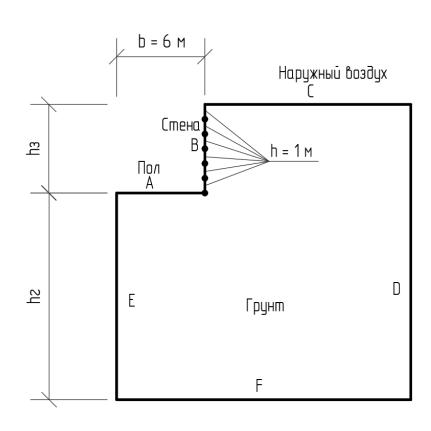
Цель работы:

исследование нестационарного теплового режима заглубленных в грунт конструкций, определение факторов, влияющих на теплопотери

Задачи:

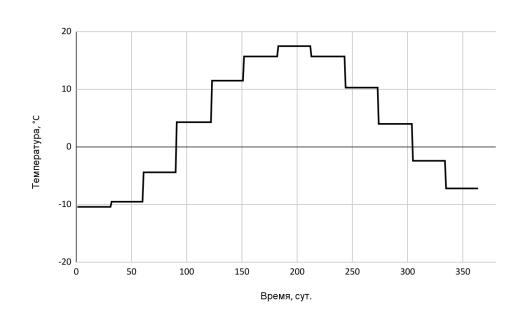
- 1. численные расчеты стены и угла в грунте
- 2. поиск климатических данных
- 3. натурное исследование теплового режима стены в грунте

1. Численный эксперимент



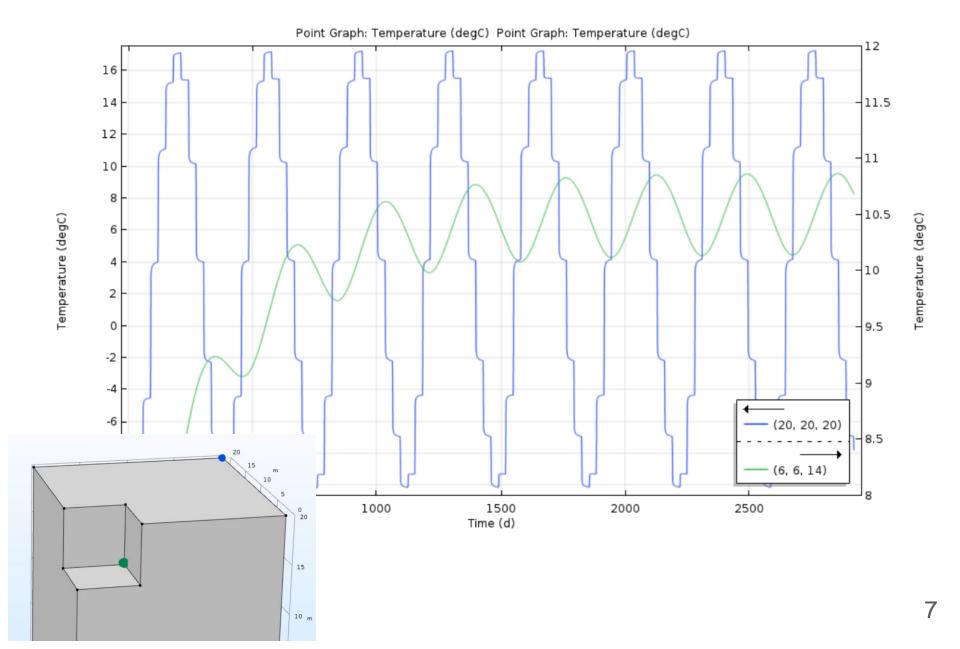
На границах D, E приняты адиабатные условия (q=0 Bт/м2)

Температура на нижней границе расчетной модели (граница F) принята постоянной и равной средней за год.


Температура воздуха в помещении +12 °C

Нестационарный процесс теплопередачи моделировался для периода 8 лет

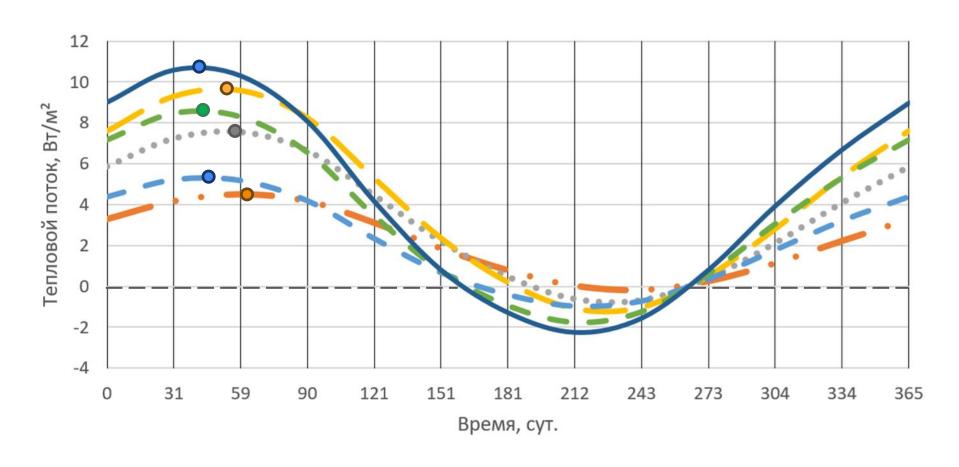
Граничные условия



Проведен расчет для грунтов с различными теплофизическими характеристиками и различной высотой стены в грунте

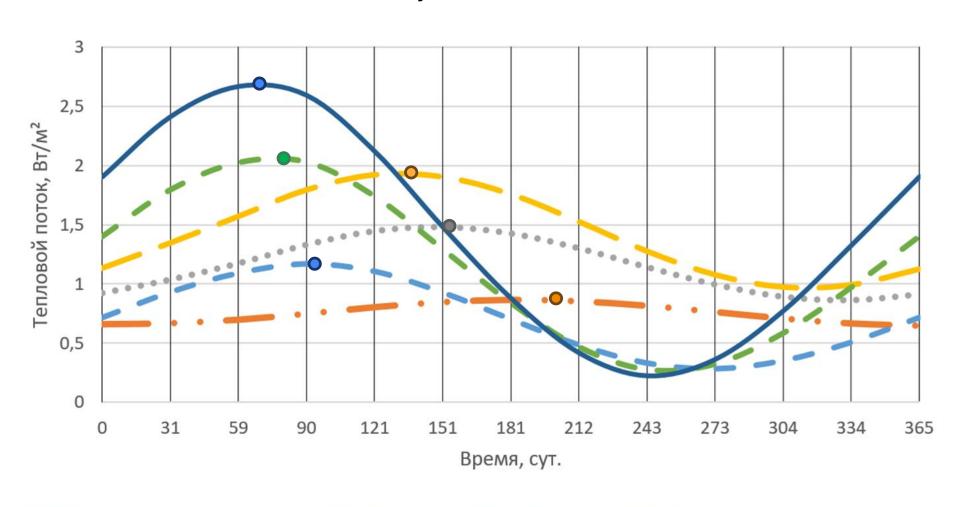
	Теплопроводность Вт/м·°С	Плотность кг/м³	Теплоемкость Дж/(кг·°С)	Температуро- проводность м²/с
Грунт 1	1	1840	840	0,647·10 ⁻⁶
Грунт 2	1,6	1840	840	1,035·10 ⁻⁶
Грунт 3	2	1840	840	1,294·10 ⁻⁶
Грунт 4	1	1000	350	2,857·10 ⁻⁶
Грунт 5	1,6	1000	350	4,571·10 ⁻⁶
Грунт 6	2	1000	350	5,714·10 ⁻⁶

Начальные условия

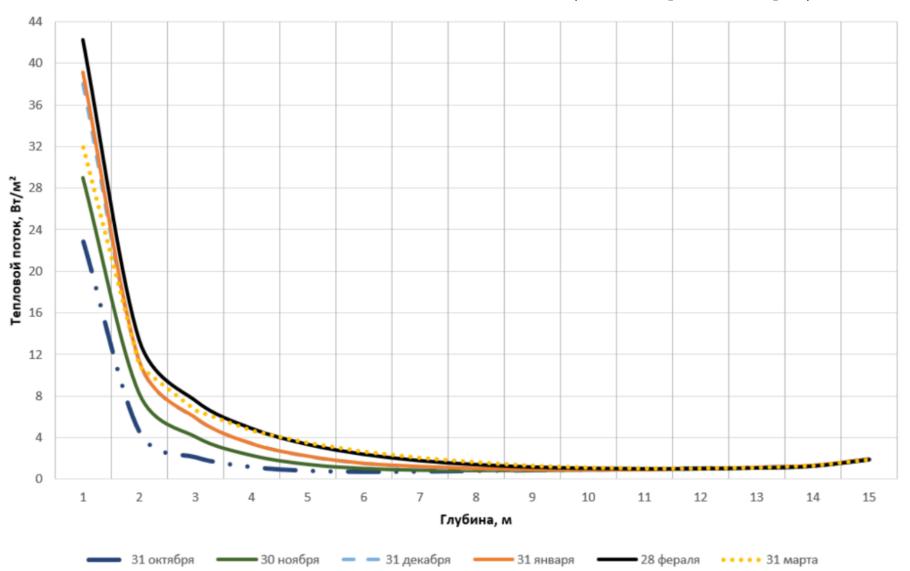


Сравнение грунтов

Тепловые потоки на глубине 3 м в течении года



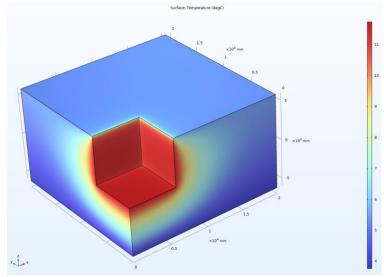
Сравнение грунтов

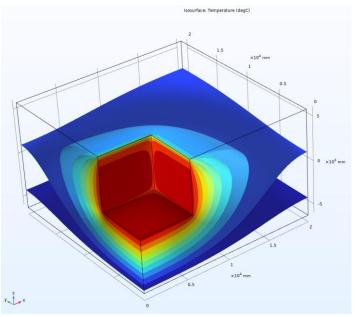

Тепловые потоки на глубине 9 м в течение года

Грунт 1 • • • • • Грунт 2 — Грунт 3 — — Грунт 4 — — Грунт 5 — Грунт 6

ТЭФ 2024

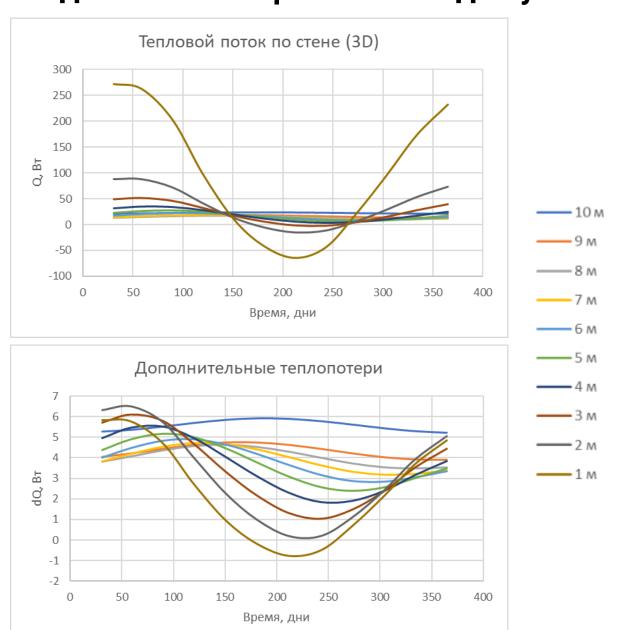
Тепловые потоки по высоте стены (октябрь - март)

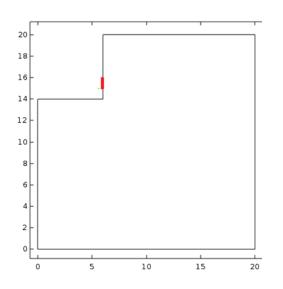

Удельные потери теплоты для угла

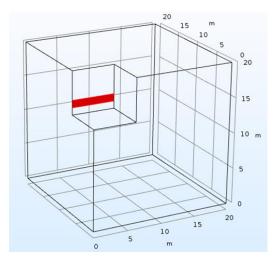


Для нахождения удельных потерь теплоты необходимо решать трехмерную задачу.

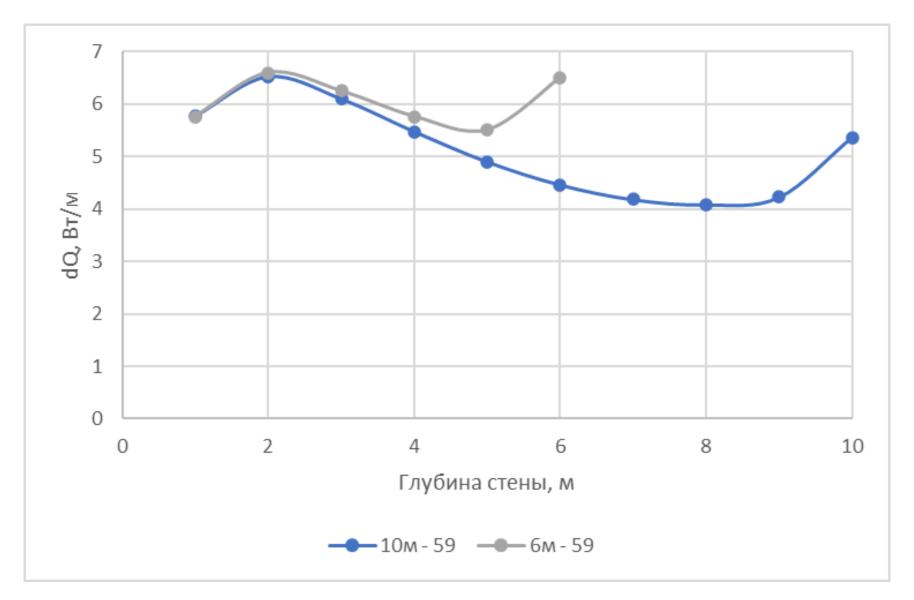
Температура на нижней границе расчетной модели принята постоянной и равной средней за год.

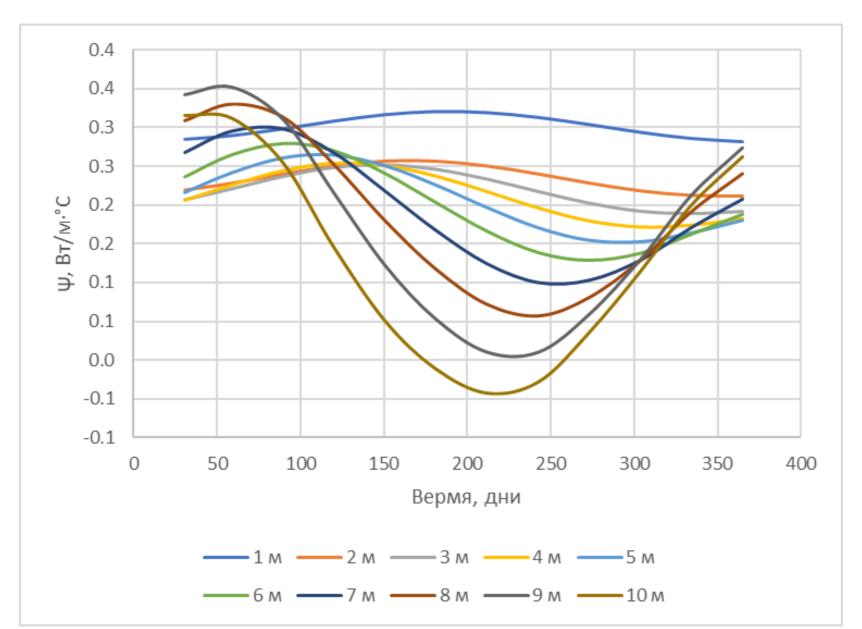

Температура воздуха в помещении +12 °C Нестационарный процесс теплопередачи моделировался для периода 8 лет



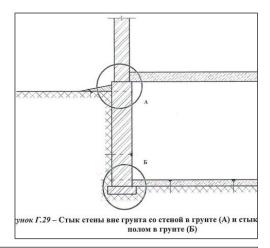


Удельные потери теплоты для угла




Дополнительные потери теплоты для угла

Удельные потери теплоты для угла


Внедрение результатов в СП 230.1325800.2015

Г.15 Узлы ограждающих конструкций, контактирующих с грунтом

В настоящем разделе приведены удельные потери теплоты для трех разновидностей узлов ограждающих конструкций, контактирующих с грунтом:

- а) стык стены вне грунта со стеной в грунте;
- б) стык стены в грунте с полом в грунте;
- в) стык стен в грунте под прямым углом. Классический угол стены в грунте.

Значения удельных потерь теплоты в таблице Г.161 приведены для участков длиной по 2 м, что в целом соответствует методике расчета приведенного сопротивления теплопередаче стен полосами. Каждой полосе стены соответствуют свои удельные потери теплоты угла в грунте.

Таблица Г.161 – Удельные потери теплоты Ч, Вт/(м. °С), угол стены в грунте

Глубина расположения угла, м	Ψ, Bτ/(м·°C)
От 0 до 2 включ.	0,282
От 2 до 4 включ.	0,352
От 4 до 6 включ.	0,374
От 6 до 8 включ.	0,395
От 8 до 10 включ.	0,418
От 10 до 12 включ.	0,439

Публикации

- 1. Крайнов Д.В., Масленников И.А. К вопросу определения теплопотерь через стену в грунте // Известия КГАСУ. 2022. №4(62).
- 2. Крайнов Д.В., Масленников И.А. Климатические данные для расчета нестационарных теплопотерь через ограждающие конструкции в грунте // Известия КГАСУ. 2023. №2(64).

Выводы

- у поверхности грунт оказывает значительное влияние на величину теплопотерь
- с увеличением глубины разница в абсолютных величинах становится не столь существенной и на глубине 14 м находится в диапазоне 0,3-0,7 Вт/м²
- определено, что разница в амплитуде таких колебаний для рассмотренных грунтов становится существенной с ростом глубины залегания стены

ТАТРСКИЙ МЕЖДУНАРОДНЫЙ ФОРУМ по энергетике и энергоресурсоэффективности

Круглый стол «Энергоэффективность и энергосбережение в строительной отрасли: от цифровой модели к реальному объекту»

Спасибо за внимание!

Крайнов Дмитрий Владимирович к.т.н., доцент КГАСУ /Казань/

Гагарин Владимир Геннадьевич д.т.н., профессор НИИСФ /Москва/

Эксперимент

Для исключения влияния выбранных начальных условий нестационарный процесс теплопередачи моделируется продолжительное время.

Для выбранного периода требуется найти достоверный источник климатических данных, для использования их в качестве граничных условий.

2. Какие существуют источники климатических данных?

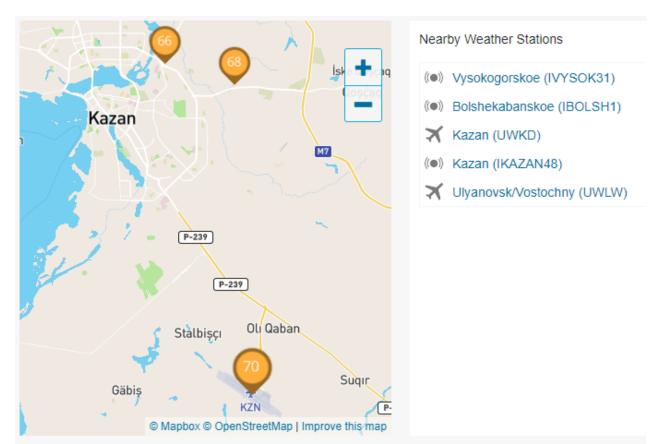
Задача

Провести анализ источников климатических данных

Проблемы

- 1. Доступность
- 2. Частота данных
- 3. Достоверность
- 4. Формат данных

Источники


- aisori-m.meteo.ru
- pogoda-service.ru
- rp5.ru
- pogodaiklimat.ru
- meteoinfo.ru/archive-pogoda
- climate-energy.ru
- visualcrossing.com/weather/ weather-data-services
- wunderground.com
- ncdc.noaa.gov
- re.jrc.ec.europa.eu/pvg_tools/ en/#TMY

Метеостанции

Синоптический индекс — пятизначный уникальный цифровой индивидуальный идентификатор (номер метеостанции), назначаемый официальным метеостанциям

Казань Опорная - Станция 275950

Сравнение источников

Климатические данные

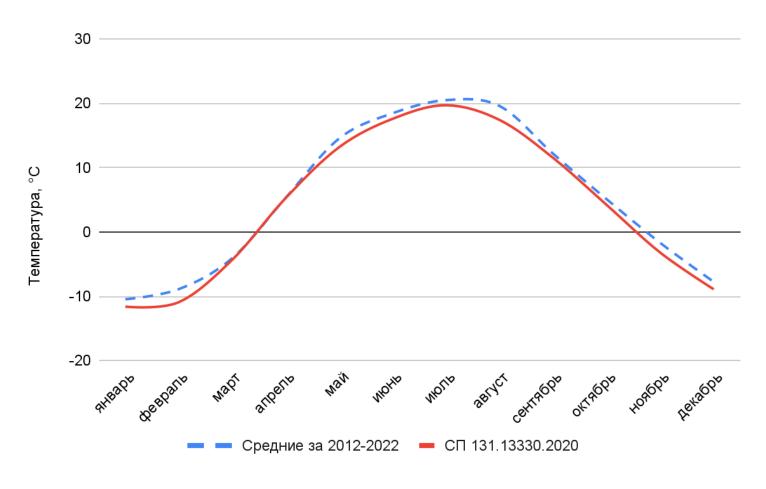
Официальный источник - ВНИИГМИ-МЦД. Сервис доступа к данным из архивов Единого государственного фонда данных об окружающей среде (ЕГФД).

ЯОД - язык описания гидрометеорологических данных.

Пашила	1881 (1936) -	1966 –	1976 –	1984 –	1991 –
Данные	1965	1975	1983	1990	H.B.
Срочные (только с 1936)	ТМ1-СРОКИ	восход	TMM1	TMM1	TMC
Суточные	ТМ1-СУТКИ	СУТКИ-76	_	TMCC	TMCC
Месячные	_	_	_	TMCM	TMCM

Обобщенные сведения о существующих специализированных массивах

Nº п/п	Название массива	Количество станций			
	Месячные данные				
1	Температура воздуха	518			
2	Сумма осадков	518			
3	Число дней с осадками больше или равно 1 мм	518			
4	Атмосферное давление на уровне станции	518			
5	Атмосферное давление на уровне моря	503			
6	Продолжительность солнечного сияния	411			
7	Упругость водяного пара	518			
8	Среднемесячные значения параметров атмосферы	23			
9	Среднемесячные значения в пограничном слое атмосферы	13			



Обобщенные сведения о существующих специализированных массивах

Nº ⊓/⊓	Название массива	Количество станций		
	Ежедневные данные			
10	Температура воздуха и количество осадков	600		
11	Температура почвы на глубинах до 320 см	458		
12	Данные о температуре почвы (по термометру Савинова)	315		
13	Характеристики снежного покрова	620		
14	Маршрутные снегосъёмки	517		
Срочные данные				
15	Основные метеопараметры	518		
16	Атмосферные явления	518		
17	Срочные данные радиозондовых наблюдений	12		

Среднемесячные температуры наружного воздуха

Для рассмотренной задачи (г. Казань) максимальное отклонение среднемесячной температуры воздуха, осредненной для периода 2012-2022 г.г., от нормативных данных составило 2 °C

Использование климатических данных

Климатические данным могут применимы для многих задач.

- Моделирование энергопотребления здания
- Исследования долговечности
- Типовой год
- Подтверждение эксперимента

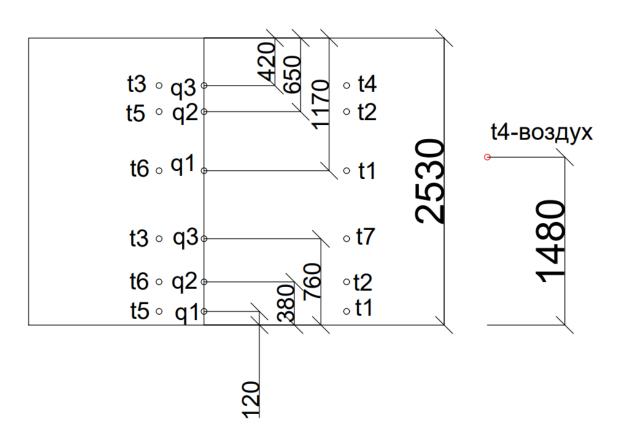
•

Полученные данные будут применены для верификации численного эксперимента

3. Объект экспериментального исследования

- Подвальное помещение 3х этажного офисного строения в г. Казань
- Стена в грунте состоит из фундаментных блоков
- Период исследования: с 02.03.2023 г. по настоящее время

Методы

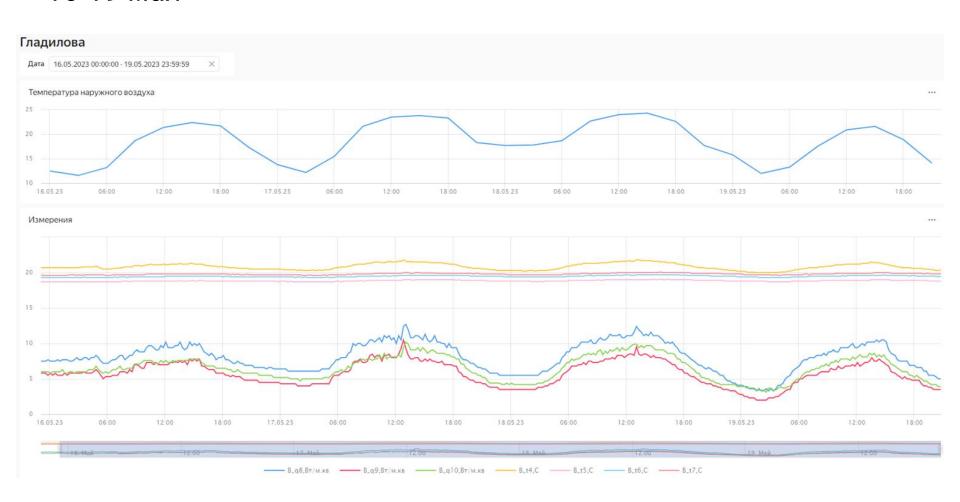

ГОСТ 26254-84 "Здания и сооружения. Методы определения сопротивления теплопередаче ограждающих конструкций"

- Измеритель плотности теплового потока
 ИТП-МГ 4.03 Поток
- Интервал измерений 15 минут

Методы

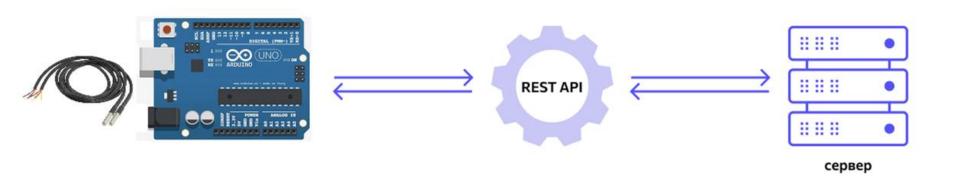
Схема размещения термопар выбиралась согласно ГОСТ 26254-84. Здания и сооружения. Методы определения сопротивления теплопередаче ограждающих конструкций Часть 2.

Результаты


Для аналитики данных использовался сервис Yandex DataLens

Результаты

16-19 мая


Разработка собственного устройства

Начата работа над устройством для мониторинга теплотехнических показателей

Клиент-серверное приложение

Участвуем с этим проектом в конкурсе студенческих стартапов от фонда содействия инновациям

Результаты

В настоящий момент продолжаем сбор данных. Планируем получить данные за полный год

- Крайнов Д.В., Масленников И.А. К вопросу определения теплопотерь через стену в грунте // Известия КГАСУ. 2022. №4(62).
- 2. Крайнов Д.В., Масленников И.А. Климатические данные для расчета нестационарных теплопотерь через ограждающие конструкции в грунте // Известия КГАСУ. 2023.

ТАТРСКИЙ МЕЖДУНАРОДНЫЙ ФОРУМ по энергетике и энергоресурсоэффективности

Круглый стол «Энергоэффективность и энергосбережение в строительной отрасли: от цифровой модели к реальному объекту»

Спасибо за внимание!

Крайнов Дмитрий Владимирович к.т.н., доцент КГАСУ /Казань/

Гагарин Владимир Геннадьевич д.т.н., профессор НИИСФ /Москва/